Levers and Torque SPH4C

A lever is a rigid bar that can \qquad freely around a support called a \qquad .

When a force causes a rigid body to rotate, we say that a \qquad has been applied.

Torque is defined as the \qquad .

Torque (T) increases as \qquad increases and also increases as \qquad from the fulcrum increases:

Torque has units of \qquad .

Example: \quad A force of 84 N is used to turn a wrench of length 25 cm . What was the torque on the wrench?

For any lever there are two torques:
the \qquad torque \qquad) and the \qquad torque \qquad):

\qquad and \qquad , respectively.
\qquad .

Example: What force does your bicep need to exert to hold a weight of $134 \mathrm{~N}(30 \mathrm{lbs}) ?$

More Practice

1. A mechanic applies a force of magnitude 540 N perpendicular to a wrench to loosen a nut. Calculate the magnitude of the torque if the distance from the applied force to the nut is (a) 0.30 m and (b) 0.50 m .
2. Calculate the magnitude of the effort force needed to produce an effort torque of magnitude $24 \mathrm{~N} \cdot \mathrm{~m}$ at a distance of 0.25 m from the fulcrum of a lever.
3. A student uses an effort force on a lever to balance a load of mass 5.0 kg . The load arm is 84 cm and the effort arm is 24 cm . Calculate the magnitude of (a) the load force and (b) the effort force.
